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(a) Concept-aware volume for class Bicycle. (b) Attributions of concepts in images of bicycles in different poses show spatial consistency.

Figure 1. We introduce Concept Aware Volumes for Explanations (CAVE). (a) We learn 3D object volumes, here cuboids, with concept
representations. Each concept captures distinct local features of objects. (b) At inference, these concepts are matched with 2D image
features, achieving robust and interpretable image classification. We further highlight the 3D consistency of these concepts in Fig. 5.

Abstract

With the rise of neural networks, especially in high-stakes
applications, these networks need two properties (i) robust-
ness and (ii) interpretability to ensure their safety. Recent
advances in classifiers with 3D volumetric object represen-
tations have demonstrated greatly enhanced robustness in
out-of-distribution data. However, these 3D-aware classi-
fiers have not been studied from the perspective of inter-
pretability. We introduce CAVE – Concept Aware Volumes
for Explanations – a new direction that unifies interpretabil-
ity and robustness in image classification. We design an
inherently-interpretable and robust classifier by extending
existing 3D-aware classifiers with concepts extracted from
their volumetric representations for classification. In an ar-
ray of quantitative metrics for interpretability, we compare
against different concept-based approaches across the ex-
plainable AI literature and show that CAVE discovers well-

grounded concepts that are used consistently across images,
while achieving superior robustness.

1. Introduction
Deep neural networks (DNNs) have achieved impressive
performance in diverse domains ranging from healthcare
to autonomous driving. However, their decision-making
processes remain largely opaque. They have already been
shown to depend on spurious correlations [28], raising con-
cerns about their reliability. In high-stake and critical ap-
plications such as healthcare or judicial justice, ensuring
interpretability and robustness is not just desirable – it is
essential for safety and trustworthiness.

To overcome such issues and make networks more trans-
parent and interpretable, various approaches have been pro-
posed in the scope of explainable AI (XAI). Notably, post-
hoc methods generate concept-based explanations for pre-
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trained networks [2, 10, 11, 18, 36], providing insights into
their decision-making process without altering the underly-
ing architecture. However, such methods can only approx-
imate the model’s computations, and thus do not provide a
faithful explanation. In constrast, another line of research
[1, 5, 7, 25, 26, 29] enforces interpretability directly dur-
ing training, making aspects of the model inherently inter-
pretable and ensuring that the explanations remain faithful
to its decision-making process. Although these approaches
show promising results with respect to interpretability, they
are often not designed with robustness in mind.

DNNs deployed in real-world scenarios typically en-
counter distribution shifts over time, out-of-distribution
(OOD) events such as occlusions, or adverse weather con-
ditions in the case of autonomous driving. In consequence,
not only the model itself, but also any explanations ex-
tracted from a representation in the model are unreliable.
In a scenario where about 40% of a car is occluded, other
methods usually fail to accurately recognize the object or
produce meaningful explanations (cf. Fig. 11). In an or-
thogonal line of research, it has been shown that incorporat-
ing 3D compositional object representations into the train-
ing pipeline significantly improves OOD robustness [20],
yet these classifiers remain inherently opaque, leaving a
critical gap in understanding their decision making.

These current limitations of image classification are re-
flected in the allegory of the cave by Plato, which gives a
philosophical argument for the issues arising with observing
a 3D world by 2D images alone. In the story, prisoners have
been chained to a cave wall and have never seen anything
else but the (2D) shadows of objects cast on the opposing
wall. The prisoners consider the 2D world of shadows their
reality and, when freed from the prison, would not accept
the reality, which is three-dimensional, color- and light-ful,
as truth. In analogy, a model (the prisoner) that has only
seen 2D images, which are projections of our world (the
shadows), is not able to reason beyond these projections
to OOD data (color and light outside the cave), and is not
able to provide spatially consistent and meaningful concep-
tual understanding (true 3D world). Here, we escape the
dilemma of Plato’s cave by learning concept-aware neural
object volumes, which allow for robust and inherently inter-
pretable image classification.

In particular, we introduce CAVE (Concept Aware Vol-
umes for Explanations), a model that leverages learned 3D-
aware neural object volumes for each class, which are then
projected into images for classification. In a nutshell, each
class is represented by a cuboid with features – represented
as high-dimensional vectors – on its surface. These features
are learned to align with the latent features of a (2D) back-
bone, orienting the cuboid through the given pose during
training. We then summarise these features on the cuboid
to form higher-level concepts which can be annotated via

an attribution approach that we specifically develop for this
architecture (cf. Fig. 1). By design, this model is inherently
interpretable, as we use the feature representations of the
higher-level concepts for classification, similar to the clas-
sification layer in a concept bottleneck model [21, 29]. In
analogy to Plato’s cave, we learn the object (with its concep-
tual features) that was used to cast the shadow rather than
learning the features of the shadow, thus escaping the cave.

We evaluate CAVE in comparison to a wide array of
existing XAI methods, including post-hoc and inherently
interpretable approaches ranging from concept extraction,
over inherent concept learning to prototype learning. For
evaluation, we consider OOD datasets to assess robustness
and consider a variety of different benchmark metrics for
interpretability, where CAVE shows to offer a unique com-
bination of robustness and interpretability, outperforming
existing works by a margin.

In summary, our contributions include:
(i) the CAVE model for robust and interpretable image

classification through neural object volumes,
(ii) a formulation of concept attribution for image classi-

fiers with neural volumes,
(iii) a novel metric for 3D consistency of concepts, and
(iv) a comprehensive evaluation comparing CAVE to dif-

ferent XAI approaches and on a variety of quantita-
tive benchmark metrics.

2. Related Work

3D Information for 2D Understanding. In different fields
of computer vision, 3D information has been shown in-
valuable for effective 2D feature representations, which are
essential for down-stream tasks including segmentation or
depth estimation [15, 19, 41]. While powerful, these ap-
proaches usually require rich data of images from different
camera-poses. Recently, NOVUM [20] pioneered using 3D
information effectively for robust classification, by consid-
ering 3D pose information to fit neural object volumes to an
image. This line of work forms the basis of our approach.
Concept-based Explanations. To make model decisions
transparent, one focus of XAI has been the discovery of
concept representations in models. For post-hoc concept
discovery, CRAFT [12, 36] and ICE [42] use matrix fac-
torization to extract concept bases from recorded activa-
tions, while MCD [37] uses a sparse subspace clustering
approach to recover concept subspaces in the activation
space. PCX [9] learns concepts on relevances of features
instead of activations. ExplaiNN [13] uses pattern mining
to identify neuron combinations that encode concepts. Re-
cently, inherently interpretable concept-based methods such
as the concept bottleneck model (CBM) [21] have been
proposed, where a concept layer is inserted as the penul-
timate layer, with each neuron encoding a specific, human-
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understandable concept. Closely related are sparse autoen-
coders [24], which often serve as basis for CBM models.
While most CBM approaches require data with concept an-
notation, label-free CBMs instead use an LLM to gener-
ate class-specific concepts, thus not requiring such heavy
annotation [29]. Almost directly related to concept-based
explanations is prototype learning, with ProtoPNet [7] as
one of the earliest approaches discovering prototypical im-
age features whose presence are then used to classify, re-
sembling a “this looks like that” explanation. The follow-
up work includes TesNet [39] and PIP-Net [26], which im-
prove various aspects of the training and prediction pipeline
for prototype networks. For a comprehensive overview, we
refer to Li et al. [22]. For a comprehensive evaluation, we
evaluate our method against CRAFT, MCD, ICE, PCX, LF-
CBM, ProtoPNet, TesNet, and PIP-Net.

Attributing Relevant Features. For an understanding of
which visual features a concept responds to, up-sampled
feature maps of, e.g., prototypes in ProtoPNet, or classi-
cal attribution methods [4, 30, 32, 33, 35] are frequently
used. None of these attributions is tailored for a neural ob-
ject volume-based classifier. Therefore, in this paper, we
adapt and extend LRP [4, 30] to be able to attribute con-
cepts to input features.

3. CAVE: A 3D-Aware Inherently Inter-
pretable Classifier

Our goal is to build an image classifier with two key prop-
erties: (1) robust classification in OOD settings, and (2) in-
herently interpretable model predictions. Specific solutions
for each of these individual properties exist; however, com-
bining them is far from trivial. Here, we use learned neu-
ral object volumes [20] as the basis for our approach. In
brief, each object class is represented by a 3D cuboid mesh
with surface features represented by high-dimensional vec-
tors. During training, leveraging available 3D pose infor-
mation, the cuboid is projected into the given 2D image and
the features from the surface are learned to align with the
corresponding features of the 2D image extracted through a
standard backbone model (e.g., a ResNet-50). At inference,
an image is passed through the backbone and the resulting
latent features are matched with the volume features. The
class represented by the maximally aligned volume is the
output. As such, the volumes are 3D-aware, robust feature
representations of the given object classes, thus alleviating
Plato’s dilemma of the cave. We provide a more formal re-
cap of this approach in Sec. 3.1.

While neural object volumes are robust, their composi-
tion through thousands of feature vectors on the surface, as
well as the classification process itself, are not interpretable.
To overcome this limitation, we first show how to extract
a sparse, representative set of interpretable concepts from

Dataset P3D+ Occluded-P3D+ ODD-CV P-Part

Occlussion 0 [20, 40] [40, 60] [60, 80] - 0

NOVUM 0.010 0.007 0.004 0.003 0.008 0.007
CAVE (Ours) 0.715 0.557 0.377 0.246 0.566 0.544

Table 1. Average confidence gap (↑,%) for correct predictions,
measured between the top two softmax scores across all classes in
Pascal3D+ (P3D+) [40], Occluded Pascal3D+ [38] (occlusion lev-
els in %), OOD-CV [43] (5 nuisance factors on pose, shape, con-
text, texture, weather), and same classes in Pascal-Part (P-Part) [8].

the volume features (cf. Fig. 1a). We then modify the vol-
ume to be covered by representative feature vectors of these
concepts and show how to classify based on these modified
volumes, making the classification inherently interpretable
in Sec. 3.2. We give an overview of this approach in Fig. 2.

The learned concepts need to be matched to features in
the input image, for which we are proposing to define an at-
tribution method, properly reflecting the volume-based clas-
sification process. Therefore, in Sec. 3.3, we show how to
define conservation rules to compute layer-wise relevance
propagation (LRP) for this purpose.

3.1. Classification Through Neural Object Volumes

In a general supervised setting, an image classifier consists
of a feature extractor f(·) and a classification layer. Given
a test input image x, the feature extractor produces a fea-
ture map Fx = f(x) ∈ RH×W×C , where C is the number
of channels, and H,W are the spatial dimensions. We use
fi(x) to indicate the feature vector for the i-th pixel in raster
order, and drop x when it is clear from context.

The 3D-aware classifier NOVUM [20], introduces a fea-
ture matching M(·) of neural object volumes (NOVs) with
the output of the feature extractor f(·) for the classifica-
tion. Before describing the feature matching M, we first
formally define NOVs. A NOV is a representation of an ob-
ject of class y, and is defined as a set of K 3D Gaussians.
Each Gaussian k is characterised by a position in 3D space
µ
(k)
y ∈ R3 and a fixed unit variance and additionally is asso-

ciated with a feature vector g(k)y ∈ RC . NOVUM fixes the
Gaussian positions to form a regular grid on the surface of
a cuboid. We define the matrix of Gaussian features for the
object class y as Gy ∈ RK×C , which will be later used to
match with the feature map Fx from the backbone model.
Extending this notation, the complete matrix of Gaussian
features across all M object classes can be represented as
G = [G1;G2; . . . ;GM ] ∈ RMK×C .

The feature matching M, as in [20], aligns each feature
fi ∈ Fx from the backbone feature map with the most simi-
lar Gaussian feature across G from the 3D object representa-
tion. The logit for class y is computed by summing over all
spatial locations where feature fi is matched to a Gaussian
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Figure 2. Overview pipeline of Concept Aware Volumes for Explanations (CAVE), a framework that allows for robust conceptual
reasoning and classification through interpretable 3D-aware neural object volumes (NOVs). (1) Given the NOV of class Car, CAVE first
extracts concepts via clustering on Gaussian features g(k)Car and represent the mean feature of each Gaussian cluster as a concept h(t)

Car. Note
that the clusters here are visually refined for illustrative purposes to better convey our method. For classification, CAVE combines image
features Fx in (2) and interpretable concept-aware NOVs H in (3) through a bag-of-word concept matching step (4), where each feature
fi ∈ Fx is best aligned with H by cosine similarity. The logit for class y is computed as the sum of cosine similarities over Fx, considering
only features mapped to its cluster (5).

feature of y:

sy =
∑

fi∈Fx

max
k

fi · g(k)y .

The class with the highest score sy is the predicted la-
bel. This formulation gives rise to 3D-aware classifica-
tion through a bag-of-words feature matching mechanism,
where image features are directly compared against 3D-
aware Gaussian features. However, this classification pro-
cess remains inherently opaque. The number of Gaussian
features involved in the matching step in the order of tens
of thousands makes it difficult to interpret which features
contribute to the final decision.

3.2. Identifying Concepts Through NOVs
To achieve an inherently interpretable NOV-based classifier,
we first extract a meaningful concept basis from each NOV
and replace the latter with these concepts at inference time.
Formally, for a volume Gy ∈ RK×C of class y, we formu-
late our class-wise concept extraction problem through the
lens of dictionary learning [12, 23]

(W ⋆
y ,H⋆

y) = arg min
Wy,Hy

∥Gy −WyH⊤
y ∥2F ,

where weight matrix W ∗
y ∈ RK×D and the dictionary of

D concept vectors H∗
y = [h

(1)
y , . . . , h

(D)
y ]T ∈ RD×C min-

imise the element-wise distance between our Gaussian fea-
tures Gy and WyHT

y . In the case of hard clustering, the
weight matrix W ∗

y reduces to a discrete assignment matrix,
where each row is a one-hot encoding that corresponds to
only one concept. This allows clustering to be much more
interpretable than methods with less sparse weight matrices.

There are different established approaches to obtain the
decomposition Gy ≈ WyHT

y , specifically K-Means, Prin-
cipal Component Analysis (PCA) and Non-negative Matrix
Factorisation (NMF). We aim to strategically select the con-
cept extraction method that encourages disentangled, part-
based concepts while maintaining competitive performance
and faithfulness. To do so, we conduct a small ablation (cf.
A. 8) and compare in terms of three key metrics: (i) ac-
curacy, (ii) sparsity, and (iii) feature distribution distance
(FDD). Here, sparsity is measured following the approach
in [12], which quantifies how sparse the weight matrix W ∗

y

is. FDD measures the divergence between the original dis-
tribution of Gy and its new representation Hy , thereby quan-
tifying how faithful the latter preserves the former. After
evaluating these three metrics, we select K-Means cluster-
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Figure 3. Comparison between standard LRP and our volume-
aware LRP. Left: Standard LRP implementation from Zennit [3]
attributing only individual pixels. Right: LRP for CAVE, which
ensures proper conservation of relevance scores.

ing for concept identification in our method.
The extracted concept dictionary Hy is now seen as

a sparse and interpretable NOV to replace the original
dense NOV Gy . We modulate the original feature match-
ing M(Fx,G) in NOVUM with M(Fx,H) that establishes
correspondences between Fx and new volumetric represen-
tation H = [H1;H2; . . . ;HM ] ∈ RMD×C . This reformu-
lation ensures that feature matching is performed against
a compact, interpretable set of concept vectors rather than
thousands of Gaussian features, all while maintaining com-
petitive robust performance. This constitutes the first step in
our CAVE framework and already improves the confidence
of predictions compared to original NOVUM (see Tab. 1).

3.3. Attribute Concepts Through NOVs with LRP
We want to transform our extracted NOVs H into
human-interpretable explanations, thereby demonstrating
the model’s reasoning through neural volumetric concepts.
To do so, we leverage LRP, an existing attribution method
that traces relevances from the model’s prediction backward
to the input pixels [4, 30]. One key element of LRP is the
conservation property, which means that the total relevance
should remain constant throughout the network [30].

LRP is, however, only defined for standard architectures
and does not yield meaningful attributions for NOV-based
classifications, attributing only to a few pixels rather than
correctly to whole object features (see Fig. 3 left).

In the following, we introduce LRP for NOVUM and
CAVE-like architectures (cf. Fig. 4, Sec. 3.3.1). We fur-
ther show how to estimate concept-wise importance scores
in Sec. 3.3.2, and provide concept visualisation details in
Sec. 3.3.3.

3.3.1. LRP with Conservation for CAVE
(i) Upsampling by concatenation. The basic NOVUM
contains a feature extractor which consists of a ResNet-50
backbone followed by three upsampling layers with con-
catenation. In this design, each upsampling layer combines

Figure 4. Illustration of relevance propagation in CAVE. Top:
At an upsampling layer U , feature maps Av and Av+l from non-
consecutive layers are concatenated after padding for dimensional
consistency. The relevance score R is split into Rv and Rv+l,
where Rv+l is masked to exclude padding contributions. Bottom:
We ensure spatial consistency by mapping relevance RM from
the matching layer to the corresponding feature fi ∈ Fx, then
distributing channel-wise with NOV-weighted feature importance.

feature maps from earlier layers, preserving fine-grained
details important for 3D-aware classification. Let us con-
sider an upsampling layer U , which concatenates feature
maps Av ∈ RH1×W1×C1 and Av+l ∈ RH2×W2×C2 from
two non-consecutive layers. Av+l is padded to A′

v+l ∈
RH1×H2×C2 to maintain dimensional consistency. Let us
further denote R,Rv, and Rv+l as the relevance scores at
the upsampling layer and two non-consecutive layers, re-
spectively. By conservation property, it should hold that
R = Rv+Rv+l. We define a relevance-preserving splitting
as follows:

R
′

v+l = R[: C2, : H1, : W1], Rv+l = R
′

v+l · 1(Av+l) ,

Rv = R[C2 : (C1 + C2), H1 : 2H1,W1 : 2W1],

where 1(.) is the indicator function that is 1 for original
non-padded elements in Av+l and 0 otherwise. After three
upsampling layers, we obtain our feature map Fx for 3D-
aware concept matching.
(ii) Volume concept matching. For the concept matching
M(Fx,H) between NOVs-based concepts H and image
features Fv ∈ RH×W×C , let the output be sM ∈ RH×W .
We further denote RM ∈ RH×W as the relevance for the
feature matching layer, and RFx

∈ RH×W×C as the rele-
vance of the feature map Fx. To ensure spatial consistency,
a relevance score ri ∈ RM is first directly mapped to the
corresponding feature fi ∈ Fx, and then further distributed
channel-wise (cf. Fig. 4). We thus get

Rspatial
Fx

(i) = RM(i) = r =

C∑
j=1

rj =

C∑
j=1

(fi ⊙Hfi)(j) ,
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Concept C1 Concept C2 Concept C3 Concept C4 Concept C5 Concept C6

Figure 5. 3D consistency of concepts. We highlight how consistent a concept is mapped to an object part in 3D ground-truth CAD models.
Here we show 6 concepts of class Bicycle corresponding to those in Fig. 1, where each illustrates the aggregated concept relevance scores
across 100 test images onto the mesh surface.

RFx
(i, c) = Rspatial

Fx
(i) · (fi ⊙Hfi)(c)∑

j

(fi ⊙Hfi)(j)
,

where Hfi denotes the matching NOV-based concept for fi.
We integrate our formulation with LRP with conserva-

tion for ResNet-50 [30], which served as our feature extrac-
tor. In Fig. 3, we provide the difference between original
LRP and NOV-aware LRP computations.

3.3.2. Concept Importance Through Volume Alignment
Our next goal is to estimate the importance of all class-wise
concepts in Hy using the previously-established LRP attri-
butions. The intuition behind this is straightforward: start-
ing from the model’s softmax output, we trace back rele-
vance to each concept. The concept importance score is
then determined using its x% quantile (e.g., 90th percentile)
across the training dataset to capture the most representative
high-relevance values while being robust to outliers.

We denote the matching NOV-based concept in H for the
feature map Fx as ∆Fx→H. We compute the relevance for
a concept h(t)

y ∈ H of class y by aggregating the relevance
scores in RM at all spatial locations i where ∆Fx→H(i) =

h
(t)
y . Formally, it is defined as:

R
h
(t)
y

=
∑

i∈H×W

RM · 1
∆Fx→H(i)=h

(t)
y

.

3.3.3. Visualising Concepts
We obtain class-wise explanations via the visualisation of
NOV-based concepts h

(t)
y ∈ H. Given the corresponding

relevance concept score R
h
(t)
y

, we re-distribute this score
throughout the network as defined in Sec. 3.3.1 to obtain a
relevance map at pixel space. We visualise all pixel loca-
tions that positively contribute to the concept h(t)

y .

4. Experiments
We evaluate CAVE against existing concept-based ap-
proaches in terms of classification performance, robustness

to OOD data, and benchmark metrics on interpretability.
For comparison, we consider the state-of-the-art post-hoc
concept discovery approaches CRAFT [36], MCD [37],
ICE [42], and PCX [9]. We further consider Label-Free
CBMs [29], and the prototype learning approaches ProtoP-
Net [7], TesNet [39], and PIP-Net [26], which all are inher-
ently interpretable. Further details are given in A. 10.

4.1. Evaluation Metrics for Interpretability

Benchmark Metrics. For our evaluation, we consider the
quality properties of the Co-12 explanation [27]. Our met-
rics are designed to quantify key properties that address the
question: to what extent are our explanations aligned with
human-annotated object parts? This includes:
1. Part IoU and Local Coverage

(i) Part IoU measures the overlap between the con-
cept mask and the ground-truth object part, ignor-
ing relevance of individual pixels. Thus, a concept
with high overlap but minimal class relevance can
still achieve a high score.

(ii) Local Coverage addresses the limitations of the
previous metrics by weighting IoU with rele-
vances, ensuring both overlap and contribution are
considered.

2. Global Coverage evaluates how well detected concepts
cover (i) the union of all ground truth object parts and
(ii) the entire ground truth object. If coverage is high,
the explanation remains stable and generalisable across
different object views, even under occlusion.

3. Entropy-based Pureness measures how concentrated a
concept is within a single object part. A highly pure con-
cept is assigned mainly to one specific object part, rather
than being distributed across multiple parts.

Formal definitions of these metrics are provided in A. 9.

3D Consistency of Concepts. A learned concept for an ob-
ject should consistently map to the same region in the ob-
ject. In particular, if the object is correctly learned, it should
be 3D consistent regarding pose and spatial orientation (e.g.
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IoU ↑ Loc. Cov. ↑ Global Cov. ↑
Pure. ↓ 3D-C. ↓∪ Parts Object

CRAFT [36] 0.065 0.104 0.266 0.412 0.483 1.302
MCD-SSC [37] 0.149 0.231 0.334 0.647 0.725 1.508
ICE [42] 0.115 0.182 0.246 0.363 0.983 1.253
PCX [9] 0.081 0.135 0.301 0.575 0.555 1.322

LF CBM [29] 0.117 0.187 0.330 0.632 0.622 1.489
ProtoPNet [7] 0.108 0.177 0.240 0.526 0.680 1.490
TesNet [39] 0.120 0.192 0.242 0.592 0.694 1.472
PIP-Net R [26] 0.062 0.113 0.216 0.734 0.330 1.332
PIP-Net C [26] 0.076 0.146 0.205 0.771 0.425 1.469

CAVE (Ours) 0.152 0.259 0.376 0.838 0.636 1.053

Table 2. Interpretability evaluation on Pascal-Part with bench-
mark metrics IoU, Local Coverage, Global Coverage and Pure-
ness for concept-based explanation methods. 3D-Consistency
(3D-C) is evaluated on Pascal3D+. All methods are evaluated us-
ing a ResNet-50 backbone. We test PIP-Net with both ResNet-50
(R) and ConvNext (C), as ConvNext is recommended.

front versus back wheel). Thus, we introduce an additional
metric that we term 3D Consistency, measuring how consis-
tent a concept is mapped to a ground truth 3D model. Here,
we use the available and correctly oriented CAD models of
objects in Pascal3D+ [40], mapping the attributions of one
concept to the faces of the CAD model. Our score is the
difference of attributions accumulated in the faces between
samples with lower being better – if in one sample the con-
cept is attributed to a different region of the 3D model than
in another sample, the difference between attributions per
face will be large. For a detailed explanation and formal
definition of the score, we refer to A. 9.

4.2. CAVE has interpretable & consistent concepts
Considering the above evaluation protocol, we use Pascal-
Part to quantitatively assess whether CAVE recovers in-
terpretable concepts regarding standard benchmark metrics
from the field and provide the results in Tab. 2. Overall,
we see that among existing inherently interpretable methods
no approach consistently outperforms the others. Among
post-hoc approaches, the recent MCD approach performs
strongly in most metrics. CAVE outperforms all com-
petitors, both post-hoc as well as inherently interpretable,
across different metrics, ranking first on all but average
Pureness. For pureness, however, we are evaluating match-
ing with the annotated parts, rather than whether what the
model learned is sensible; if the model learned the con-
cept wheel, but rim and tire are annotated, it will receive a
worse score because despite learning a meaningful concept.
Hence, this metric has to be taken with a grain of salt. This
is also reflected by the other scores: CAVE is best in learn-
ing concepts that meaningfully cover annotated parts (IoU),
cover most of the parts and the object (Coverage metrics),
and are consistently localised.

Inspecting concept attributed to image regions, we can
observe this effect also qualitatively (see Fig. 6), where

Dataset P3D+ Occluded P3D+ OOD-CV P-Part

Occlusion 0 [20, 40] [40, 60] [60, 80] - 0

CRAFT [36] 93.5 81.3 62.6 37.8 66.2 73.0
MCD-SSC [37] 96.8 87.2 67.3 40.2 72.9 72.6
ICE [42] 97.0 85.5 64.5 39.9 74.0 73.4
PCX [9] 96.4 85.5 65.3 38.0 75.9 74.8

LF CBM [29] 98.4 89.5 68.7 40.9 83.6 79.2
ProtoPNet [7] 96.3 80.7 55.5 27.2 66.9 68.1
TesNet [39] 97.6 85.0 63.7 34.0 75.0 74.7
PIP-Net R [26] 96.1 88.3 73.9 50.1 63.1 67.1
PIP-Net C [26] 98.1 90.7 73.5 44.0 72.8 72.1

CAVE (Ours) 99.4 96.9 86.6 54.7 81.4 87.4

Table 3. Classification accuracy (↑) on Pascal3D+ (P3D+), Oc-
cluded Pascal3D+ with different levels of occlusions in %, OOD-
CV with 5 nuisance factors (pose, shape, context, texture, and
weather), and Pascal-Part (P-Part).

similar, semantically meaningful concepts are highlighted
across images and across different target classes.

While only roughly approximated through a cuboid, the
learned features still consistently map to meaningful regions
on the ground truth 3D model provided with the data, even
for such a sparse and complex structure as a bicycle (cf.
Fig. 5).

4.3. CAVE is robust to OOD data
One particular goal of CAVE was to be both, robust and
interpretable. To evaluate robustness, we consider the Pas-
cal3D+ dataset with 3 levels of occlusion (Occluded P3D+),
and OOD factors such as pose, shape, context, texture, and
weather (OOD-CV dataset). We measure the performance
in terms of accuracy and report the results in Tab. 3. To
no surprise, all methods perform relatively well on standard
Pascal3D+, with CRAFT being the worst when using the re-
constructed features for the model output. CAVE performs
best, with an almost ideal 99.4% accuracy. When intro-
ducing small levels of occlusion, covering 20− 40% of the
image, CAVE experiences only a slight deterioration in per-
formance, other methods drop by about 10% in accuracy
points. This trend continues for higher levels of occlusion,
with CAVE outperforming all competitors, including LF-
CBMs, by a margin. Also visually, CAVE shows to only
use actual (non-occluded) object parts for classification (cf.
Fig. 12). On OOD-CV, LF-CBM performs best (83.6%
acc) with CAVE a close second (81.4% acc), while other
methods achieve significantly worse performance. Taken
together, CAVE provides a unique combination of inher-
ent interpretability and robustness to OOD data that is un-
matched by existing work.

5. Discussion
With CAVE, we presented a robust and inherently inter-
pretable model for image classification and provide an at-

7



Figure 6. Example concepts learned by CAVE. We show qualitative visualisations of concepts learned for each class y ∈
{Motorcycle, Bus, Bottle, Car, Chair, Train}. For each, we show the concept attributed to the ground truth 3D CAD model (left) showing
spatially consistent concept learning, and visualise attributions in example images from different angles (right).

Figure 7. Qualitative visualisations of concepts learned for class Car (top) and Boat (bottom). Note that the same colors are used for
both classes, but the concepts they represent are distinct between Car and Boat.

tribution method able to retrieve actually relevant input fea-
tures for model decisions. Through extensive experiments
with available part annotations, we found that CAVE finds
the most consistent and interpretable concepts among a
wide range of concept discovery and extraction methods,
while being robust to OOD data.

As with all evaluations of interpretability, our evaluation
is dependent on available benchmark datasets with ground
truth annotation. While this annotation might not be the
ideal, we here cover different aspects of interpretability
through a diverse set of benchmark metrics established in
the literature, and a new measure of 3D consistency, to pro-
vide a fair ground for evaluation.

One limitation specific to CAVE, as well as the original
NOVUM [20], is the need for annotated poses during train-
ing. Yet, through this additional annotation we not only
drastically increase robustness, but also get more consistent
and interpretable features compare to standard 2D models
by learning 3D object representations. Moreover, off-the-
shelf object pose estimation methods [34] allow to annotate
datasets for training of CAVE in down-stream applications.

A further potential limitation is the use of cuboids as 3D
object representations, which allow to learn object repre-
sentations flexibly and efficiently, but might poorly approx-
imate the true shape of an object. In our experiments, how-
ever, we found that the concepts learned on cuboids project
to meaningful and well-localised object regions even for
sparse and complex 3D objects (cf. Fig. 5, 6).

6. Conclusion
We introduced CAVE, a robust and inherently interpretable
image classifier that learns concept-aware neural object vol-
umes. Through these volumes, our approach avoids Plato’s
dilemma of the prisoners in the cave, learning meaning-
ful 3D object representations instead of only represent-
ing a flattened 2D world like a shadow on the wall. We
showed that the discovered concepts on these 3D repre-
sentations are spatially consistent and better aligned with
human-annotated object parts, all while robustly perform-
ing in classification across various OOD settings.
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Escaping Plato’s Cave: Robust Conceptual Reasoning
through Interpretable 3D Neural Object Volumes

Supplementary Material

7. Comparing Concept Spaces: Neural Vol-
umes vs. Feature Activations

An advantage of an image classifier with neural object vol-
umes is that it enhances the separation of the representa-
tion space, ensuring that Gaussian features from different
classes remain well-distinguished [20]. Naturally, this is
also the case for activations of features within the same clas-
sifier (cf. Fig. 8), which then leads us to examine where
concept extraction is most effective. Our CAVE frame-
work extracts class-wise concepts directly from neural ob-
ject volumes G, whereas traditional methods rely on acti-
vations from training features. We explore whether G pro-
vides a more meaningful concept space by following three
key steps:
1. extracting concepts using low-rank approximations (e.g.,

NMF). For a fair comparison, we use NMF as our extrac-
tion method because it is known to effectively extract
meaningful and interpretable concepts from activations
[12]. Note that NMF is not guaranteed to be the optimal
choice for neural volumes G.

2. projecting activations into the concept space, and
3. train a K-means clustering model on training image acti-

vations and evaluate it on test activations across different
occlusion levels for concept separation.

A well-structured concept space should produce well-
separated and compact clusters, which can be evaluated us-
ing the Silhouette Score and Davies-Bouldin Index (DBI).
The Silhouette Score ranges from [−1, 1], where 1 indicates
optimal separation and values near 0 suggest overlapping
clusters. In contrast, the Davies-Bouldin Index measures
the ratio of intra-cluster dispersion to inter-cluster separa-
tion, with lower values indicating better-separated, more
compact clusters. We also show 2D low-dimensional repre-
sentations comparing the concept spaces of neural volumes
and training activations across different classes in Fig. 9.

Occlusion 0 [20, 40] [40, 60] [60, 80]

NOVs G 0.343 0.333 0.335 0.338
Activations 0.034 0.040 0.037 0.033

Table 4. Silhouette scores (↑) averaged across all classes in Pas-
cal3D+, comparing concept spaces derived from neural object
volumes G and traditional activations. Higher scores indicate
more compact clusters, with values close to 1 representing well-
structured concept spaces. Results are reported across different
occlusion levels in %.

Occlusion 0 [20, 40] [40, 60] [60, 80]

NOVs G 1.154 1.155 1.162 1.137
Activations 2.365 2.348 2.306 2.318

Table 5. Davies-Bouldin Index (↓) averaged across all classes in
Pascal3D+, comparing concept spaces derived from neural object
volumes G and traditional activations. Lower score means better
cluster separation.

8. Details on Concept Extraction in CAVE
Ablation on Concept Extraction Methods
To choose the best concept extraction method on the object
volumes for our CAVE model, we evaluate the extracted
concept representations based on three metrics: accuracy,
sparsity and FDD. We choose K-Means on the observation
that its trade-off on accuracy is marginal, while its inter-
pretability and faithfulness reflected in sparsity and FDD
respectively are the best. We further visualise the trade-off
between cluster quality, which is measured in within-cluster
sum of squares (↓) for K-means, cummulative explainated
variance (↑) for PCA, and reconstruction error (↓) for NMF,
versus number of clusters (cf. Fig. 10).

Accuracy (%, ↑) Sparsity (↑) FDD (↓)

K-Means 99.36 0.95 0.32
PCA 99.39 0.00 0.39
NMF 99.25 0.63 0.83

NOVUM 99.5 – –

Table 6. The concept extraction methods are applied on the neu-
ral volumes Gj ∈ G in image classifier NOVUM with d = 20
concepts. Each result is averaged across all classes from the Pas-
cal3D+ dataset.

Attribute Relevance in Concept Extraction Methods
Note that how we compute concept attributions differs
slightly depending on the concept extraction method.
• K-Means: Since each Gaussian feature is hard-assigned

to a concept, the concept attribution is simply the sum of
the relevance scores for all assigned Gaussians.

• PCA & NMF: These methods use soft assignments, mean-
ing each Gaussian contributes to multiple concepts. Here,
the concept attributions are weighted by their respective
soft assignment values.
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Figure 8. Representation spaces derived from neural object volumes G (left) and activations of features (right).

Boat Bottle Car Dining Table

Figure 9. t-SNE projection of concept embeddings in neural volume space (top) vs. activation space (bottom) for four classes in
Pascal3D+. Concepts in neural volume space are more well-separated and compact compared to those extracted from activation space.

9. Interpretability Metrics

Part IoU and Local Coverage

The goal of these two metrics is to measure how well a con-
cept localises in a ground-truth object part. Previous work
including [14, 31] measures how well the attribution map
Am of a concept cm aligns with a specific, interpretable part
of an object that are defined as the ground truth region bk.
Specifically, it calculates the proportion of positive attribu-
tions that fall within bk. However, this approach has a lim-
itation: if a concept attributions Am is concentrated within
bk but only covers a small portion of it, it may still yield
a high score despite not comprehensively representing the
object part.

On another hand, Intersection over Union (IoU) has been
used widely in object detection, which can also be applied
within this context to measure how well a concept covers bk
[6]. In specific, given an input image x, IoU is defined as:

IoUm,k(x) =

∑
i,j (1m(i, j) · 1k(i, j))∑

i,j 1m,k(i, j)
, (1)

where 1m(i, j), 1k(i, j), and 1m,k(i, j) are binary indica-
tors for the concept region, ground-truth region and union of
both regions respectively. Subsequently, IoU does not dif-
ferentiate between pixels with varying attribution strengths,
treating all contributing pixels equally.

Therefore, in addition to IoU, our evaluation includes
Local Coverage to weight IoU with relevances, defined sim-
ilarly to Dice-Sørensen coefficient that has been used also
in XAI evaluation [17]:

LCm,k(x) =

∑
i,j A

+
m(i, j) · 1k(i, j) + 1m(i, j) · 1k(i, j)∑

i,j A
+
m(i, j) +

∑
i,j 1k(i, j)

,

(2)
where A+

m(i, j) is the positive attribution given at pixel
(i, j). Local coverage score LCm,k(x) ∈ [0, 1]. A concept
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Figure 10. Ablation on number number of concepts. We show how well the different approaches to identify latent structure perform in
terms of the corresponding metric of data structure recovery (y-axis) for varying latent dimension respectively cluster number (x-axis).

cm with a good local coverage not only has high relevances
in ground-truth region bk but also covers it well.

Global Coverage
Understanding how well detected concepts encompass the
ground-truth object is crucial. In the case of occlusion, a
well-covered set of concepts enhances robustness, as it can
still identify other visible, unoccluded parts. To do so, we
first normalise the attributions so that the total attribution
across all concepts for a given input sums to 1. This means
that if all the concepts perfectly collide with ground-truth
part mask, the coverage score is 1. This also ensures a fair
and consistent comparison between different methods.

Ã+
m(i, j) =

A+
c (i, j)∑

m′
∑

i,j A
+
m′(i, j)

. (3)

The global coverage metric can be computed with respect to
either the union of all ground-truth object parts or the object
bounding box. The advantage of the former is that it pro-
vides a more precise evaluation by focusing only on mean-
ingful object regions, avoiding background noise. However,
given that such annotation is often incomplete, we also in-
clude the latter for a more comprehensive evaluation. For
an input image x, we define the

GC∪Parts(x) =
∑
i,j

∑
m

Ã+
m(i, j) ·min

(
1,
∑
k

1k(i, j)

)
,

(4)
which denotes the total positive attributions that also
contributes to the ground-truth masks. The term
min (1,

∑
k 1k(i, j)) ensures that the overlapping masks

are treated as a single region. Similarly, we also define the
formula for object bounding box:

GCObject(x) =
∑
i,j

∑
m

Ã+
m(i, j) · 1bbox(i, j) . (5)

Naturally, GC(x) ∈ [0, 1] for both cases, with a higher
score means better coverage.

Pureness
This evaluation metric focuses on how distinct a detected
concept c with respect to ground-truth part annotation bk
[26]. A concept is considered pure if its attributions are con-
centrated within a single meaningful object part bk rather
than being distributed across multiple parts. Formally, pure-
ness of a concept cm is defined as follows:

Pm(x) = −
∑
k

Om,k logOm,k. (6)

with

Om,k =

∑
i,j A

+
m(i, j) · 1k(i, j)∑
i,j A

+
c (i, j)

.

A lower score indicates better purity.

3D Consistency
A desired property of concept is meaningfulness [16], and a
concept must be consistent to be meaningful. Ensuring con-
sistency of spatial location of a latent concept is thus crucial.
To this end, we propose a metric for 3D Consistency that
evaluates how well a concept maintains its spatial integrity
across different object viewpoints. Formally, given an in-
put image x of class y, using known camera parameters, we
project each pixel in A+

m(i, j) onto the corresponding faces
Ωy of the given CAD model (in correct orientation) of class
y. For a class concept cm, the score is then computed across
a set of N images of class y, denoted X , as follows:

C3D(X , cm) =
1

N2

∑
x ̸=x′∈X

∥Ωy(A
+
m(x))−Ωy(A

+
m(x′))∥1 ,

(7)
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Classes # Images # Valid Images

0. Aeroplane 643 554
1. Bicycle 418 342
2. Boat 388 321
3. Bottle 341 272
4. Bus 347 285
5. Car 687 616
6. Chair 490 302
7. Dining Table 173 154
8. Motorbike 372 319
9. Sofa 346 276
10. Train 407 341
11. TV Monitor 384 323

Total 4996 4186

Table 7. Number of evaluation samples per class in the Pascal-
Part dataset. Grayed-out classes do not have meaningful part an-
notations.

Accuracy (%, ↑)
Dataset P3D+ Occluded P3D+ OOD-CV P-Part

Occlusion 0 [20, 40] [40, 60] [60, 80] - 0

ResNet-50 98.1 92.5 78.9 51.2 73.4 77.5

NOVUM 99.5 97.2 88.6 59.2 82.8 88.7

Table 8. Accuracy of ResNet-50 and NOVUM on Pascal3D+
(P3D+), Occluded-P3D+ and OOD-CV, and Pascal-Part (P-Part).

with C3D(X , c) ∈ [0, 2]. In essence, for each sample we
accumulate attributions in the faces of the CAD model, and
compare the differences in these vectors of face attributions
between any pair of samples from the class y. Thus, a lower
score means better consistency. We include the class-wise
3D consistency scores for all methods in Tab. 9. For a fair
comparison, we exclude background concepts (e.g., present
in less than 50% test images) since those will not be mapped
to the object CAD model and the result distance will be
always 0 across these concepts.

10. Experimental Setup and Optimisation
Datasets
We evaluate the accuracy of our method CAVE and other
baselines on multiple datasets: Pascal3D+ [40], Occluded
P3D+ [38] with three levels of occlusion [20, 40], [40, 60]
and [60, 80]%, OOD-CV [43] and Pascal-Part [8]. All
methods, except for post-hoc approaches, are trained on
Pascal3D+ training split and evaluated on these aforemen-
tioned datasets. For OOD-CV dataset, since two classes
Bottle and TV Monitor are not present, we exclude their
logit scores when computing predictions. For Pascal-Part,
we filter the dataset to include only the 12 object classes

present in Pascal3D+ and cross-reference them to iden-
tify test images that also appear in Pascal3D+ (cf Tab.
7). For quantitative interpretability metric, we use Pascal-
Part dataset where ground-truth part annotation is available.
Four classes Boat, Chair, Dining Table, and Sofa do not
have part annotations.

During training for baselines, the images are resized to
224 × 224 resolution. We normalise pixel values using the
ImageNet mean and standard deviation. For CAVE, the im-
ages are resized to 640× 800, with object-centric view.

Architecture
All methods have ResNet-50 backbone, except for PIP-
Net where we also include ConvNext backbone as it is
recommneded. Our CAVE leverages the backbone of
NOVUM, which also has ResNet-50 as its feature extractor.
We provide ResNet-50 and NOVUM performance across
our evaluation datasets in Tab. 8.

Implementation Details
We follow the implementation provided by the original au-
thors [7, 9, 26, 29, 36, 37, 39, 42] for our baselines:
1. For post-hoc methods including CRAFT, ICE, and PCX,

we used the exact setting provided in their codebases,
except for the number of class-wise concepts being 20.
For MCD-SSC, we use completeness threshold of 0.7
instead of default 0.5 to discover a meaningful number
of concepts.

2. For Label Free CBM, we followed the codebase instruc-
tions to generate a concept set, resulting in 441 concepts.
We then trained a ResNet-50v2 label-free CBM using
their hyperparameters: learning rate 0.1, batch size 512,
CLIP model ViT-B/16, and interpretability cutoff 0.45.
Unlike post-hoc approaches, where the number of con-
cepts is fixed at 20, label-free CBM learns this number
dynamically. After training, we observed 297 non-zero
weights out of 5292, yielding roughly 5% sparsity.

3. For ProtoPNet and TesNet, we used the exact training
hyperparameters from their codebases: the prototype ac-
tivation function is log, with regular add-on layers, a
training batch size of 80, and a training push batch size
of 75. The learning rates for features, add-on layers, and
prototype vectors are set to 1e−4, 3e−3, 3e−3 respec-
tively, with a joint learning rate step size of 5. The pro-
jection (push) step was performed every 10 epochs. The
network was trained for 100 epochs without a warm-up
period and without extensive data augmentation to en-
sure fairness across all baselines.

4. For PIP-Net, we trained the network using the hyperpa-
rameter settings from its codebase. Specifically, during
pre-training, we used a batch size of 128 and trained for
10 epochs. For the main training phase, we used a batch
size of 64 and trained for 60 epochs. The learning rate
was set to 0.05 with no weight decay.
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Methods Aeroplane Bicycle Boat Bottle Bus Car Chair Dining Table Motorbike Sofa Train TV Monitor Mean

CRAFT 1.388 1.304 1.303 1.207 1.398 1.472 1.367 1.192 1.305 1.320 1.304 1.063 1.302
MCD-SSC 1.609 1.706 1.622 1.330 1.645 1.667 1.498 1.227 1.705 1.500 1.578 1.009 1.508
ICE 1.542 1.570 1.558 0.934 1.340 1.486 1.195 0.900 1.536 1.049 1.354 0.578 1.253
PCX 1.305 1.079 1.718 1.416 1.440 1.735 1.028 1.228 – – 1.522 0.750 1.322

Label-free CBM 1.576 1.617 1.580 1.225 1.552 1.669 1.533 1.293 1.681 1.490 1.563 1.085 1.489

ProtoPNet 1.636 1.616 1.665 1.351 1.636 1.509 1.485 1.219 1.632 1.550 1.630 0.952 1.490
TesNet 1.678 1.639 1.532 1.284 1.605 1.680 1.466 1.211 1.640 1.450 1.563 0.913 1.472
PIP-Net R 1.345 1.484 1.280 1.347 1.741 1.041 1.330 1.097 1.646 1.412 1.383 0.876 1.332
PIP-Net C 1.532 1.616 1.413 1.407 1.740 1.362 1.453 1.357 1.687 1.558 1.476 1.031 1.469

CAVE (Ours) 1.190 1.434 1.159 0.632 1.043 1.230 1.169 0.991 1.344 0.958 0.906 0.575 1.053

Table 9. Class-wise 3D Consistency Scores on Pascal3D+ averaged across all concepts for each class, with L1 distance.

Cave (Ours) LCBM PCX ProtoPNetOriginal Image L2 Occluded Image

Figure 11. Example of a car with 40% occlusion, where methods like LCBM [29], PCX [9], and ProtoPNet [7] fail to provide reliable
explanations due to their sensitivity to missing object parts. Unlike the other methods, CAVE (Ours) focuses on more informative regions
despite the occlusion, demonstrating better resilience to missing object parts. This highlights the importance of robust explanations when
dealing with real-world challenges.

No occlusion 
[0%]

L1 [20% - 40%]

L2 [40% - 60%]

L3 [60% - 80%]

Figure 12. Layer-wise relevance was propagated in CAVE from the output prediction to the pixel space under four different
occlusion levels: no occlusions, [20, 40], [40, 60], and [60, 80]. In all cases, CAVE accurately highlights the unoccluded parts of the
object, demonstrating its robustness in handling occlusions and ensuring reliable explanations even under challenging conditions.
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Figure 13. Qualitative examples of concepts detected by CAVE (Ours) vs. a selection of baseline methods MCD, CRAFT , LF CBM
and PIPNet-R for class Bicycle with no occlusion. Our explanations consistently highlight concept that seems to be front wheel, whereas
for baseline methods such as MCD-SSC, CRAFT, and LF CBM, the concepts are mixing between wheels, bike frame, and human.
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Figure 14. Qualitative examples of concepts detected by CAVE (Ours) vs. a selection of baseline methods MCD, CRAFT , LF CBM
and PIPNet-R for class Aeroplane with occlusion level 20 − 40%. Our explanations consistently highlight concept that seems to be
vertical & horizontal stablisers and refrain from occluded object parts. Whereas for baseline methods, the explanations appear inconsistent
and partially highlight image regions where the object parts are not visible.
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Figure 15. Qualitative examples of concepts detected by CAVE (Ours) vs. a selection of baseline methods MCD, CRAFT , LF CBM
and PIPNet-R for class Bus with occlusion level 40− 60%. Our explanations consistently highlight concept that seems to be rear wheel
and refrain from occluded object parts. Whereas for baseline methods, the explanations appear inconsistent and partially highlight image
regions where the object parts are not visible.
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Figure 16. Qualitative examples of concepts detected by CAVE (Ours) vs. a selection of baseline methods MCD, CRAFT , LF CBM
and PIPNet-R for class Motorcycle with occlusion level 60 − 80%. Our explanations consistently highlight concept that seems to be
wheel and refrain from occluded object parts. Whereas for baseline methods, the explanations appear inconsistent and partially highlight
image regions where the object parts are not visible.
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